SoPilotSoPilot

🔥 Search Hot Tweets

Search and analyze hot tweets from KOL accounts list (list: https://x.com/i/lists/1961235697677017443) within 6 hours. Use SoPilot plugin to quickly comment and occupy the comment section.

Real-time Hot Tweet Analysis

Justin
27.2Kfo
Justin@interjc· 2h ago发布

张雪峰这 5000 万是不是马上就要掏了 https://t.co/eyEWYXblaZ

24
0
7
2.3K
Data updated 29m ago
Viral Probability
59%
Predicted Views
7.0K
Est. 100 views for your reply
宝玉
144.7Kfo
宝玉@dotey· 3h ago发布

这可能是我写的最“接地气”的 AI 科普:从家政阿姨看懂 Agent 和 MCP 我家请了个家政阿姨打扫卫生,这位阿姨高中毕业,但是经过了家政公司专业训练,学会了该怎么针对不同家庭去打扫卫生,使用各种不同的清洁工具。 当然她不可能记住所有工具的用法,所以额外的,家政公司还给她了一本《家政技能手册》,这个手册有两部分,一部分是目录,不同技能的简要介绍,字数不长,阿姨每次来干活之前都会读一遍目录,以便需要时能想起来; 《家政技能手册》的另一部分是技能的详细介绍,详细介绍里面不仅说明了各种技能的详细做法,有的还有配套的手册,有的还需要借助一些工具。 家政公司还给阿姨配备了一款定制的平板电脑,这个平板电脑支持一种智能家居协议,所有支持这种智能家居协议的家电她都可以用这个平板电脑连上操作。 为了提升效率,家政公司还给她配备了便携式扫地机器人,每次她都开车带上,一些扫地的任务就直接使用扫地机器人。 为了我经常需要阿姨来家里打扫,为了避免麻烦,所以我把我家的一些基本情况写成了说明书,好让阿姨知道该怎么更好的清扫我们家,并且阿姨很专业,每次工作完都写了一份详细的工作记录,这样她下次来还可以看一下以前都做了啥。 虽然有这个说明书,当然每次过来我还是要交代一下:“阿姨,明天我家要开了个 party,客厅一定要弄干净整洁点。” --- 说了这么多我当然不是为了炫耀我家请了个阿姨干活或者帮这家家政公司打广告,而是借这个来“辅助解释”一些常见的 AI 名词。 - 家政阿姨:AI Agent,有基础知识(类似于大语言模型),经过训练,会规划会使用工具 - 扫地机器人:SubAgent,专业的、自主的执行者。 主AI(阿姨)负责委托和监督,机器人(SubAgent)负责具体执行。这大大解放了主AI的精力(上下文窗口),让她可以去干更重要的活。 - 智能家居协议:MCP(模型上下文协议),智能家居协议就是那个家电的统一标准: 支持智能家居协议(MCP 协议)的家电工具阿姨都可以使用。 - 《家政技能手册》:Skills,家政技能手册可以帮助阿姨(Agent)学会她没有被训练过的技能,而且这些技能是“动态加载”和“渐进式披露”的。 “动态加载”的意思是:阿姨只有在需要用特定技能的时候,才会去《家政技能手册》翻该技能的详细内容。 “渐进式披露”的意思更进一步:阿姨不会一开始就把整本手册都读完,她干活前先看一眼目录(元数据,大约 100 个词),“哦,这个技能跟我现在的任务有关”。然后它再打开读具体章节(完整的指令,小于 5000 词)。 这有什么好处?省脑子(省上下文窗口)。 确保阿姨总是在最需要的时候,用最少的“脑力”获取最关键的专业知识。 - 我家:Project,存放了与我家相关的说明书、历史信息。 希望上面这个比喻能帮助你更好的理解这些概念。 ⚠️ 需要注意的是,这些比喻只是帮助你理解这些概念,并不能代替你深入的去学习和理解这些知识。

48
11
6
9.8K
Data updated 29m ago
Viral Probability
74%
Predicted Views
70.0K
Est. 900 views for your reply
CuiMao
21.6Kfo
CuiMao@CuiMao· 3h ago发布

众所周知,人的精力是有限的,处理完客户的需求,现在我来处理小奶狗。

20
0
3
2.1K
Data updated 29m ago
Viral Probability
55%
Predicted Views
6.0K
Est. 400 views for your reply
ding.one
159.7Kfo
ding.one@dingyi· 3h ago发布

「懒猫」是我第一次 mute 一个关键词。

117
3
32
20.3K
Data updated 29m ago
Viral Probability
100%
Predicted Views
279.0K
Est. 800 views for your reply
Susan STEM
40.6Kfo
Susan STEM@feltanimalworld· 4h ago发布

AI 原生软件,这两周我一直在讲。我也分享过一个最简单、最日常的例子:购物 Claude Skill。 如果你用过,你大概已经体会到了——所谓“AI 原生”,不是比传统 App 多几个智能功能,而是整个运作方式变了。 你不再点按钮,不再找菜单,而是直接说:“帮我记录一下刚买的东西。”“下周提醒我补货。” 系统不是在“记账”,而是在学习你的结构、你的节奏、你家是怎么运作的。 当你真正用起来,你会突然意识到: 你操作软件的方式变了,你的思维方式也跟着变了。 这才是 AI 原生软件的核心。 此文有中文翻译。 When Software Disappears: The Real Beginning of AI-Native Systems https://t.co/UANM07h6DA

41
3
2
5.8K
Data updated 29m ago
Viral Probability
63%
Predicted Views
25.0K
Est. 1.9K views for your reply
Cell 细胞
20.0Kfo
Cell 细胞@cellinlab· 4h ago发布

如果你用过 Flomo 或者买过小报童, 或者看过《产品沉思录》, 那你大概率知道这些小而美背后的人 —— 少楠 昨晚听了期他关于一人公司的访谈,3 小时信息量巨大。 少楠是典型的产品经理出身,创办了多个项目,包括美食分享应用“食色”、动画门户网站 Anime Taste、便签工具 Evermemo 和二手书平台“摆摆书架”等,也在丁香园做过首席产品官,后来出来做了多年一人公司。 Flomo 和 小报童 都是他和合伙人 白光 一起做的,十来个个人的团队,全员远程,活得还挺滋润。 从这期访谈里整理出 4 条生存法则, 每一条都是他用真金白银验证过的:

49
3
14
6.2K
Data updated 29m ago
Viral Probability
70%
Predicted Views
28.0K
Est. 100 views for your reply
Justin
27.2Kfo
Justin@interjc· 4h ago发布

网友很快就做了一个生成器 https://t.co/G1oVyAEX5s https://t.co/peI2mYOBhe

56
7
6
12.0K
Data updated 29m ago
Viral Probability
63%
Predicted Views
70.0K
Est. 800 views for your reply
向阳乔木
68.1Kfo
向阳乔木@vista8· 4h ago发布

经常有人问,能否一次性跟多个AI模型对话。 之前橘子做过一个Chrome插件叫AIHomeTab,把新开浏览器窗口变成AI对话框,一次性向多个模型提问对话。 今天,爱贝壳团队也做了一个类似的插件叫AI ChatHub 产品思路差不多,拼接URL提交到多个模型获得结果。 Chrome 插件应用商店搜“AI ChatHub”安装即可。

24
0
2
3.2K
Data updated 29m ago
Viral Probability
59%
Predicted Views
7.0K
Est. 400 views for your reply
Frank Wang 玉伯
15.1Kfo
Frank Wang 玉伯@lifesinger· 4h ago发布

YouMind 的这一波更新很不错。划重点: 1、遇到不满意的 AI 产出,可以一键点踩退还消耗的所有积分。真正按效果付费,再也不用担心积分被 AI 乱花了。 2、如果是遇到 YouMind 自己出错了,会自动退还积分,点踩都不需要。 3、写好的文章,可以一键复制到微信公众号了,默认简洁优雅,并支持换主题颜色。 4、AI 配图里的中文问题,也可以调用即梦 4.0 来生图解决了。 你的需求,是 YouMind 前进的动力。 YouMind 的诚实,值得你信任。 大胆创作,不止于学。

34
2
6
4.7K
Data updated 29m ago
Viral Probability
60%
Predicted Views
10.0K
Est. 100 views for your reply
Li Xiangyu 香鱼🐬
16.3Kfo
Li Xiangyu 香鱼🐬@LiXiang1947· 5h ago发布

我们实验室以前有一个本科生 非常认真,非常聪明,非常努力 大一就来实验室做实验 基本上每天都会在实验室忙一会 有的时候两三个小时 有的时候七八个小时 一直和我们组博士做实验做到了大四 最后本科毕业,论文都还没发出来, 一直到她自己博士入学一两年 她和博士的两篇文章才被接收 所以,每次看到生物学的本科生本科发了什么顶刊。我都有点情绪复杂。然后感叹有个好爹妈真好

386
7
25
131.5K
Data updated 29m ago
Viral Probability
100%
Predicted Views
1.2M
Est. 4.2K views for your reply
idoubi
21.3Kfo
idoubi@idoubicc· 5h ago发布

ShipAny One 破 $10k 用了 4 小时 ShipAny Two 破 $10k 用了 3 天 感谢支持,继续完善。❤️ 半价活动持续到 11.30 号,新用户 🉑 冲,老用户 0 元购新版。 https://t.co/fbT37uBd8Y

22
0
2
5.7K
Data updated 29m ago
Viral Probability
54%
Predicted Views
11.0K
Est. 500 views for your reply
dontbesilent
55.6Kfo
dontbesilent@dontbesilent12· 6h ago发布

如果有人敢在抖音讲 claude skills,大体分为三种情况 1. 为了让小白听懂,大量使用修辞手法,以至于信息压缩极其严重,根本无法把整个事情完全讲清楚 2. 讲的很专业,但是播放量极差 3. 既有深度,又有流量,这是真高手

32
1
4
4.9K
Data updated 29m ago
Viral Probability
60%
Predicted Views
10.0K
Est. 500 views for your reply
Orange AI
140.6Kfo
Orange AI@oran_ge· 6h ago发布

作为老板,最心痛的事情莫过于 给员工提供了 Claude Code、Codex、Cursor 各种工具 但员工却不用 了吧...

112
3
51
30.7K
Data updated 29m ago
Viral Probability
100%
Predicted Views
228.0K
Est. 400 views for your reply
宝玉
144.7Kfo
宝玉@dotey· 8h ago发布

关于印度裔美国人和华裔美国人差异的有趣的观点(下面的内容是 Junde Wu 原推文内容摘要): 65年移民和国籍法开始,印度大批受过良好教育的医生、工程师、学者进入美国,成了印度裔社区的第一代基础,而他们的高学历背景,也直接塑造了整个族群的教育水平与收入结构。 而华人移民的节奏完全不同。 因为中国经历了文化大革命,高学历、高技能的大陆移民真正的大规模涌入,其实要等到 80 年代末、90 年代 才开始,直到 2000 年代才达到峰值。 我们今天看到的差异,不是因为文化,也不是因为某个族群“更聪明”,而是因为不同族群来到美国的时间点不同、路径不同、筛选机制不同。

76
10
10
36.6K
Data updated 29m ago
Viral Probability
62%
Predicted Views
177.0K
Est. 1.3K views for your reply
马东锡 NLP
32.5Kfo
马东锡 NLP@dongxi_nlp· 8h ago发布

今年,我读了很多 alignment 和 AI safety 的论文。 开始一天比一天好奇,Ilya Sutskever 的 Safe Superintelligence Inc 到底在做什么神秘的研究和产品?

31
1
4
4.9K
Data updated 29m ago
Viral Probability
52%
Predicted Views
10.0K
Est. 500 views for your reply
Susan STEM
40.6Kfo
Susan STEM@feltanimalworld· 9h ago发布

M: 来这里的意义是什么? D:因为门票免费? M:那只是现实层….因为黑鸟是冷战侦察机工程巅峰,飞行速度超过马赫2.5全身热膨胀,把缝隙填满。形成内真空状态。波音707的原型,当时在华盛顿航展,毫无征兆的做了空中翻滚。开启喷气式时代。 D:哦,你儿子看上个80刀的纪念品,你去把钱付了? M:算了吧,不如买汉堡。 D:欢迎回到现实层。

67
0
12
15.5K
Data updated 29m ago
Viral Probability
58%
Predicted Views
21.0K
Est. 100 views for your reply
海拉鲁编程客
19.0Kfo
海拉鲁编程客@hylarucoder· 11h ago发布

codex 八九成是降智了 极高概率是5.1降智 不小概率是5.0也跟着降智

22
1
14
7.0K
Data updated 29m ago
Viral Probability
50%
Predicted Views
10.0K
Est. 100 views for your reply
Susan STEM
40.6Kfo
Susan STEM@feltanimalworld· 11h ago发布

谁能认出来?我能。 https://t.co/qa4X3Slw4k

22
0
2
3.4K
Data updated 29m ago
Viral Probability
40%
Predicted Views
7.0K
Est. 400 views for your reply
𝙩𝙮≃𝙛{𝕩}^A𝕀²·ℙarad𝕚g𝕞
14.4Kfo

靠,正像Elon曾经说过的,尤根发明了当前AI的everything! 当前AI的所有理论都可以从尤根一个人写过的论文中找到线索。 https://t.co/AMd8ZB4IW8

210
34
7
50.3K
Data updated 29m ago
Viral Probability
58%
Predicted Views
87.0K
Est. 500 views for your reply
Susan STEM
40.6Kfo
Susan STEM@feltanimalworld· 14h ago发布

在讨论 AI-Native 软件范式(AI-Native Systems) 时,我们必须先承认一个现实:用户从来没有被教育过如何使用“语言作为系统界面”。过去三十年他们接受的是另一套训练: 无数个 App 容器,每个 App 代表一个单独的世界,有自己的按钮、菜单、图标、工作流。用户的心智是被图形界面塑形的。 而当你突然把一个纯语言界面放到他们面前——光的、秃的,没有工具条,没有按钮,没有模式切换——大多数用户是会本能不适的。 因为这不是他们被社会化学习过的操作方式。 这正是 AI-Native 的悖论: 语言本来是人类最自然的界面,但在软件里,它反而变成“最陌生的界面”。 换句话说: 用户需要被重新训练,让语言重新成为界面。 但“语言即界面”其实只是表层。真正的底层结构是: 语言 → 结构 → 调度 语言不是聊天,语言是可执行结构; 结构不是代码,结构是可调度的认知单元; 调度不是操作系统,调度是系统的生命机制。 要让消费者理解一个“没有 App、没有按钮、没有菜单”的世界,他们需要一个适应期。因为这是一种范式迁移: 从“点按钮”到“发起意图”; 从“在 App 之间切换”到“让结构在后台自动调度”; 从“模仿电脑的操作方式”到“让电脑模仿人的思考方式”。 这就是 AI-Native 时代真正的冲击点: 不是技术本身,而是用户心智的迁移速度。

24
1
9
9.9K
Data updated 29m ago
Viral Probability
56%
Predicted Views
13.0K
Est. 100 views for your reply
Susan STEM
40.6Kfo
Susan STEM@feltanimalworld· 14h ago发布

老了,胖了。 问AI,我YouTube咋办? 他居然建议我去贴假睫毛…. https://t.co/mHl071AGy7

98
2
26
9.1K
Data updated 1h ago
Viral Probability
54%
Predicted Views
12.0K
Est. 100 views for your reply
宝玉

宝玉

@dotey· 142.5K followers

关于 ChatGPT 为什么喜欢用破折号,这个问题的原因似乎现在还没有定论,不过刚看到一篇博客分析这个问题,还挺有趣。 先说一个有趣的问题是 AI 特别喜欢用 "delve"(深入探究)这个词。 这个现象的答案是已知的:RLHF(人类反馈强化学习)。 简单说,AI 模型训练的最后一步,是雇佣大量的人类“导师”来给它的回答打分。OpenAI 雇佣的导师很多在肯尼亚、尼日利亚等非洲国家。而在这些地区的“非洲英语”中,"delve" 是一个非常常用且得体的词汇。 于是,当 AI 用 "delve" 时,非洲的导师们觉得“这话说得不错”,就给了高分。AI 就此学会了:“哦,客户喜欢我用‘delve’。” 那么,破折号也是因为这个原因吗? 作者顺着这个思路去查证:是不是非洲英语里也特别爱用破折号? 结果,并不是! 尼日利亚英语破折号的出现频率(每词 0.022%)远低于普通英语的平均水平(0.25% 到 0.275%)。 这说明,“深入探究”(delve)和“破折号”(—)这两个 AI “口音”,来源并不相同。 作者最终发现了一个决定性的线索:时间。 大家回忆一下,2022 年底的 GPT-3.5,其实并没有这个毛病。这个“破折号上瘾症”是在 GPT-4 和 GPT-4o 身上才集中爆发的。 不只是 OpenAI,谷歌和 Anthropic 的模型,包括一些中国的大模型,都开始用破折号。 那么,从 2022 年到 2024 年,所有 AI 实验室的训练数据,到底发生了什么共同的变化? 答案是:AI 公司的“数据荒”来了,它们开始疯狂“喂”AI 吃书——特别是“旧书”。 在 2022 年,AI 主要吃的是互联网上的公开数据、盗版电子书(比如 LibGen 上的)。但很快,这些数据就不够用了,而且质量良莠不齐。 为了让模型变得更“有文化”、更“高质量”,AI 公司们(法庭文件显示 Anthropic 在 2024 年 2 月开始了这项工作,OpenAI 只会更早)启动了一个庞大的工程:大规模扫描实体书,把纸质书数字化,作为训练数据。 好了,破案的最后一块拼图来了。 既然 AI 吃了大量(可能是几百万册)扫描的纸质书,那么这些书是什么年代的呢? 盗版电子书网站上的书,大多是当代流行读物。而 AI 公司为了“填饱肚子”并绕开版权,扫描的书中,有很大一部分是更古老的、已进入公共领域的作品。 作者找到了一个关于英语标点符号使用频率的研究,它显示: 破折号在英语文学中的使用频率,在 1860 年左右达到了顶峰(约 0.35%),在 19 世纪末和 20 世纪初的使用率,远高于当代英语。 作者举了个例子:著名的《白鲸记》(Moby-Dick,1851年出版)一书中,破折号出现了 1728 次! 真相至此水落石出: 我们现在用的最先进的 AI,它的“标点符号观”并不是从 2020 年的互联网学来的,而是从 1890 年的旧小说里继承的。 AI 公司们为了获取“高质量”的语料,把大量 19 世纪末、20 世纪初的文学作品喂给了模型。AI 忠实地学习了那个年代的写作风格——其中就包括对“破折号”的狂热喜爱。 当然,作者也承认,这仍然是一个基于证据的推测,还有一些小疑问没解决: 1. 为什么 AI 只学会了用破折号,却没有学会像《白鲸记》的船长那样说话? 也许模型只是吸收了标点符号这种“潜意识”的风格,而没有吸收具体的用词? 2. 有没有更简单的解释? 比如,Sam Altman 曾随口提过,他们发现 RLHF 的人类导师“似乎更喜欢”带破折号的回答,觉得那样更“口语化”,所以就“多加了点”。 不过,综合来看,“扫描旧书”这个理论目前是最有说服力的。它完美地解释了为什么 GPT-3.5 不会,而 GPT-4 之后的模型(它们都大量训练了新的书籍数据),然后集体对破折号“上瘾”了。 有兴趣可以看看原文:https://t.co/BxRnoWxsnS

91
11
10
27.6K
Posted 13d ago · Data updated 12d ago
Reply Suggestion

Est. 1.6K views for your reply