🔥 推特起爆帖监控
通过实时监控和智能分析大V账号的列表(list: https://x.com/i/lists/1961235697677017443),帮您发现大V账号即将起爆的热帖推文。结合 SoPilot 的生成高质量评论智能体,帮助您快速生成专业和高质量的评论,在黄金时间抢占评论区位置。你也可以点击上面链接查看最新帖子。如需订阅通知,请点击下面的Discord按钮或RSS按钮订阅。

普通人如何拿到X 每月发的低保? 你突发奇想靠流量变现,但是发了条帖子,无人问津?你不信邪,在了一周,浏览量 50 但是X 上还是每天有人分享拿到低保,是他们都在骗你吗?还是你天生不适合做社交媒体? 不是的。假如你要学会借势,就是去大 V 评论区发表有价值的内容,你通过努力也可以成功。 但是,你要学会方法,优化每一个关键步骤 下面的视频介绍了: 为什么去大 V 评论区评论是第二好的起号方式 别人是如何关注你,你应该如何优化这个流程 社媒不是 零和游戏,你拿到了低保并不代表我会损失,所以我是真心分享与你 那么第一好的起号方式是什么呢?人多眼杂,进群分享。

突破自己舒适圈很难,但也是一种像运动一样需要去锻炼的能力。多做几次,也就慢慢熟了。 我近几年自己最大尺度的一次突破舒适圈,是去面试《奇葩说》的海选。进了第一轮,当天真的是现场吵架,还是远程!我的天,感觉嘴巴都不利索了。嗯,准备啥的完全没用,那个就得看你是不是那种特质的性格。 我和我吵的那哥们儿年纪应该比我小一点,我们都双双被淘汰。那场海选十几个人,好像就选一到两个再进第二轮,再进第三轮,就这样,最终选出那些辩论(吵架)高手。 那次是真的体会到自己舒适圈之外的世界,挺好。丢脸吗?反正谁都不认识,谁就算真的是公开各种人看着你出丑,谁也不会太在意的。

「 LLM, Drivel-ology 」 “一家三代烟草人,传承和守望 。” LLM 能理解其深意么? Drivel-ology,这是啥?废话-学。 此处的废话跟 bullshit 又不一样,看似胡说八道,但又有某种目的的隐含意义,比如 “因为崇拜切格瓦拉的反思本主义思想,所以我买了他所有的文化周边。” 论文分享: [ Drivel-ology: Challenging LLMs with Interpreting Nonsense with Depth ] 作者提出 Drivel-ology,指语法正常却蕴含悖论、文化隐喻的有深度的胡说八道,并发现 LLM 虽能流畅生成文本,但对语用深层含义的理解不足。 LLM 在明显的有害信息检测上进步明显,但面对低级红高级黑,任重道远。

AI 如同电力,关键不在于谁能造出最亮的灯泡,而在于是否能建成覆盖全社会的“电网”。对普通人来说,包括程序员,真正的指数级机会不是在造模型端,而是在电网端:如何建立一套社会、技术与制度共同组成的网络,让智能像电力一样可靠、普及、隐形地运行。没有电网,AI 只能停留在少数人的炫目演示里;有了电网,它才能成为支撑下一阶段文明的底层基石。 AI as Electricity: Turning High Voltage into Everyday Use https://t.co/6Do2TLkL07

这个月参加了很多大会,见了不少人,跟去年不一样的是都开始谈“all in AI”。 现在一听到“all in AI”这个词我就脑瓜疼。 我对 AI 本身没什么疲惫感,主要现在很多企业喊得太轻巧太空洞了。 组织在用一种“只要喊了就算做了”的方式, 假装在变革。 但其实谁都知道,那些真正该动的地方一个都没动。 从组织角度讲,我看到的大多数所谓 all in,更像是一种花活,写一堆 MCP,挂个 AI 模块,接着开个发布会,发个 pr。 然后自我感动地告诉全公司,我们已经拥抱未来了。 那这个时候我就会很认真去问: - 那你们的数据打通了吗? - 你们把原来的流程拆了吗? - 你们给 AI 真的分配了决策权了吗? 回应基本就是沉默或者支吾。 说说我的看法,我现在特别警惕也特别反感那种技术热词主导的战略决策,它们太容易让人放弃思考、放弃怀疑并且放弃责任了。 一个人, 只要说 all in AI,好像就赢了; 只要说未来都得靠 AI,好像就站在了浪潮前面; 但实际呢?根本没构建任何 AI 能跑得起来的组织环境,也没有准备好用 AI 重新定义自己手里的权力、工作方式和判断逻辑。 仅仅只是站在原地,举着一个闪亮亮的口号,把自己骗得很开心而已。 真正的 all in,永远是疼的。 需要从最熟悉的系统里抽出骨头,打断惯性的思维方式,然后忍受混乱和不确定; 需要愿意承认“我原来那个流程是错的”、“我原来那套认知已经落后了”; 是必须对团队说:“我们从今天起不再靠人盯数据,而是相信模型先跑一轮”; 而不是说“我们接入了某某 AI API,所以从今天起我们变成 AI 公司了”。 我更愿意看到那种不说 all in,但确实把 AI 真正干进系统里的人。 比如医生端的文献检索系统重构,让医学知识能被自然语言查询和落地辅助决策, 比如客服系统不再是死板脚本,而是有记忆、有学习能力的半自动应答流程, 比如原来要三轮审批的工单系统,现在可以直接通过 AI agent 做前置分拣与聚类分析。 这些可不是 showcase,是一个组织真正动了肌肉骨骼,而不是给自己贴了个 AI 贴纸。 所以当我再听到有人说“我们也准备 all in AI 了”的时候, 我会忍不住想回一句:你准备 all in 的到底是什么? 是未来,还是自我安慰? 是能力体系的更新,还是一种不能落后的集体焦虑? 如果只是想借 AI 节省人力,那最后省下的不是成本,可能是整个系统的进化机会。 如果不想改人、不想改流程、不想改决策逻辑,那就别说 all in,真的没那么便宜的。 深夜的一点想法,写得有点重,但是真心的。 AI 是很酷,但别让它变成了又一个“喊完就算做了”的口号。 我们都值得一点更真实的变化。

为什么主打「悦己」口号的女性内衣品牌,真实目标都是库存管理 https://t.co/5shOQtX1ON

如何判断一个赛道是否拥挤 你就看同行的定价就知道个差不多 一套试卷,如果答题的都是尖子生,那答案就都大差不差 如果答题的都是差生,答案就千奇百怪 凡是定价整齐划一的,比如国内 20-25w 的新能源汽车市场,那就是高手如云,刀光剑影 凡是定价稀碎的,一人一个样的,比如国内某平台的心理疗愈赛道,那就是菜鸡成群,一顿胡搞 如果你懂定价,你会觉得毫无竞争可言,整个赛道就你一个人

凡人小北
在 OpenAI 最新那篇《How People Use ChatGPT》的研究报告里,可以看到一个很多技术人不愿意承认的事实。 我们天天讨论 AI 的未来、模型的能力、Agent 的协同,但普通人真正反复在用的确是最不起眼、最没技术含量、但最能偷懒的那一类小脑力动作。 很多的创业方向都是 AI 重构操作系统,但在报告里能看到的基本都是这样的提问场景: “我懒得写,你帮我润色下” “这事我大概懂,但你能快速解释一下吗” “我脑子卡住了,你先给我几个思路我再改” 就是这类小到不能再小、但一天下来会出现无数次的轻认知需求。 要说这些任务值钱吧,好像也不大值钱;但要说不值钱吧,每一次都真想掏出点什么东西来换时间、换注意力、换一口气不费脑的轻松感,于是,这反而成了 ChatGPT 用得最频繁的几个场景。 报告里有个特别关键的数据点:写作、实用建议、信息查询这三类用途,加起来占了用户对话的大头。 注意!!! 不是图像生成、代码开发和多模态探索之类的,就是字面意义上的“你帮我想点内容”、“你帮我写点东西”、“你告诉我这个怎么做”,极其朴素、但极其高频的脑力协助。 更有意思的信息是,真正把这三类用法用在工作场景中的人占比也很高,尤其是在教育程度高/收入水平高/日常脑力劳动密度大的人群中。也就是说大量的高认知人群的低成本输出策略,用 AI 省点脑子,完全不是因为不会做,单纯的不想做或者不想做得那么费力。 我意识到一个很本质的判断转变,AI 应用不应该去比谁更智能,而应该去比谁更懂人类和人类不想动脑的那一瞬间。 很多技术人一个很大的错觉,以为大家想要一个能回答所有问题的 GPT,其实大家更想要一个能帮他们免于思考前5分钟的小工具;以为用户要的是全链路智能流程,其实用户更需要的是一个“我脑袋转不动了你先帮我垫一脚”的认知助理;以为大家要构建的是一个 super agent,但现实中能留下来的产品,很多时候可能只解决了一个问题,比如:懒得写。 也正因为这样,我现在看“做什么 AI 应用能赚钱”这个问题,视角已经完全变了。别去想还能不能做一个内容平台、一个垂直模型、一个 SaaS 系统。应该反过来去问自己:我有没有办法,找到一个特别具体、特别细分、但特别常见的人类偷懒瞬间,然后围绕这个瞬间,去设计一套轻决策路径 +提示词模板 + 好的 UI 输出,让用户在最不想动脑的时候,最快拿到可修改的半成品。 而当这个偷懒动作被频繁触发,它就自然变成了习惯性的AI 肌肉记忆,而我们所做的应用,也就从一个工具变成了大脑外挂。 那 AI 产品的商业价值又该如何定义,可能有一类不在于能不能模拟一个人类专家,而在于能不能替用户做掉那些明明可以做但就是不想做的动作。 真正的市场不应该只盯着智能的天花板,往下看看,再懒惰的地板上也有大量的机会。 那再 AI 革命的宏大叙事下,我们追求的就不只是让人更强,让人更轻也应该进入视野。 人类会为强大而敬畏,但也会为轻松而掏钱。 思考下自己的日常,再环顾下市场,一个值得做的 AI 应用,不一定惊艳,但一定能替人类懒一次。 所以, 你想不想做一款 AI 产品,能替用户少动一次脑? 你能不能用 prompt、memory、数据和一点点贴心,帮人类多偷一秒懒? 如果可以,那它可能比我们写出一个能做十种事情的智能体,还更容易被买单和留存。 这类的机会还有很多。
现在评论预计可获得 500 次曝光
推特账号冷启动秘籍:蹭起爆帖流量的评论卡位术
通过精准识别潜力推文,结合及时且有价值的评论互动,您可以有效利用他人的流量红利,快速提升账号曝光度,并将流量转化为您的粉丝群或产品用户。 详细技术原理请关注公众号文章:《不会发帖也能快速涨粉?万字长文教你通过搜索起爆帖+评论撬动10万+级流量的秘密武器》
一、评论策略的增长优势
评论的流量优势
Twitter 评论系统会优先展示高质量的早期评论。当原创内容获得大量曝光时,优质评论将自然获得连带性流量,形成一个高效的曝光通道。
💡 一条优质早期评论通常能获得原帖约 10% 的曝光量,这意味着在 10 万曝光的爆文下,你的评论可能获得 1 万次曝光。
为什么评论更适合冷启动?
- 无需大量粉丝基础,依靠评论质量和时机获取流量
- 投入产出比高,不需要花费大量时间创作原创内容
- 可持续性强,通过持续评论建立稳定的曝光渠道
二、评论时机与内容评估
黄金时间窗口发布后 2 小时内
Twitter 算法在内容发布初期进行首轮分发测试,此时的评论互动不仅能获得最佳展示位置,还能助力内容获得更多算法推荐。
快速评估内容潜力
👥 作者影响力:重点关注 10 万+粉丝大V的观点内容,或 5k+ 中V的独特洞察
💡 内容特征:观点鲜明、干货密度高、反常识性强的结构化内容
三、SoPilot 起爆帖评论功能使用指南
功能概述
SoPilot 的起爆帖评论功能通过智能分析模式,帮助您快速发现和参与高潜力推文互动。系统通过多维度指标分析,为您推荐最具增长潜力的互动机会。
数据来源:我们通过监控推特的列表(list: https://x.com/i/lists/1961235697677017443)内成员(都是大V)的起爆帖,确保您能够接触到最优质的内容源。如需加入该列表,请与我联系@sven_ai。你也可以点击上面list链接查看最新的帖子。
使用流程
1. 查看和评估智能分析结果
- 在主面板查看系统智能分析的起爆帖结果(每小时更新)
- 关注发布时间(优先2小时内的内容)
- 重点关注互动增长趋势和预测评分
- 评估内容与您专业领域的相关性
2. 互动操作
- 使用 SoPilot 的评论提示词生成专业和精彩的评论
- 根据上下文调整评论内容和风格
- 选择最佳时机发布评论
使用建议
- 保持评论的专业性和建设性,避免简单附和或无意义互动
- 根据不同账号和内容类型,调整评论的深度和风格
- 合理使用 SoPilot 插件快速生成专业和高质量评论
- 定期分析成功案例,总结和优化您的评论策略
注意事项
- 避免过度频繁的评论,保持自然的互动节奏
- 确保评论内容符合平台规范,避免可能触发限制的行为
- 关注评论的时效性,把握黄金互动时间窗口
- 适度展示专业观点,避免过度营销或推广倾向
获取实时起爆帖通知
加入我们的 Discord 社区,获取最新的起爆帖推送通知。我们会在第一时间通知您高潜力推文的出现,帮助您抢占评论先机。
您也可以通过 使用 Feedly、Inoreader 等 RSS 阅读器订阅 https://sopilot.net/rss/hottweets
即可获取实时通知。