🔥 Search Hot Tweets
Search and analyze hot tweets from KOL accounts list (list: https://x.com/i/lists/1961235697677017443) within 6 hours. Use SoPilot plugin to quickly comment and occupy the comment section.
Yeah!!! 上电视啦!!! 感兴趣的朋友一定要听呀! https://t.co/Qe24i37AOD https://t.co/ghujwz4cj0
韩国黑色电影《无可奈何》,有点当年《寄生虫》的感觉了,好看啊! 中年失业大叔为了找工作,把其他竞争对手一一干掉。 人生真的是一念天堂一念地狱啊。 https://t.co/tTcBENVAFJ
妈妈你为什么带精灵的帽子? 帽子的第一性原理不是保暖吗? https://t.co/cleU30rW4e
上次被那堆愚蠢的、记错日期的东欧老乡给气着之后落了个病根儿,一生气就胃疼。哪怕稍微烦躁一下、血压升高了都会疼,反应极其灵敏,真是逼着我学会修身养性,凡事儿别生气。 花了一天时间,已经和出版社battle得差不多了,他们已经把电子书撤了,我发了我自己的,等审核通过就可以给大家发链接了,真是不容易。也证明了很多时候生气什么的情绪其实没什么用,先把事情沟通做好最重要。
Use this simple prompt to generate more poses In a 3x3 grid, show this character in different angles, keep the scene the same, random poses https://t.co/CW9g1VEXyM
🌿🍂 Capture the romance of the seasons with this healing botanical leaf art style—nature is the best artist. 🎨 🍌 nano banana pro prompt --- Prompt Template --- Creative botanical art collage depicting [Scene/Activity]. The image is constructed entirely from exquisite cut natural leaves, flower petals, plant stems, and wild berries. The silhouettes of figures and objects are formed by the intricate arrangement of these plant elements. The plant surfaces feature a slightly wet, glossy texture adorned with crystal-clear morning dew droplets. Rich, vibrant colors with distinct visual layering. The background is a soft, natural bokeh that harmonizes with the mood of the scene. Macro photography style, hyper-realistic organic textures, 8K resolution, masterpiece. --- Scene:a girl riding a bicycle through a park
最近推友推荐的这两个 App,都是 AI 让小应用变得非常便捷的案例 比大公司产品好用得多 https://t.co/m6JI6Epvok
几秒钟内将你的 localhost 分享给任何人。 通过一个在全球可访问的 HTTPS URL! $ brew install cloudflared $ cloudflared tunnel --url <你的本地域名> 这是 ngrok 的一种替代方案,无需注册、完全免费。 https://t.co/I0XqN47TD3
This JSON lets you turn any image into a stylish, retro magazine cover poster with one click. Just replace {{TITLE_TEXT}} with the title you want, and the big headline on the poster will update automatically. { "poster_structure": { "format": { "aspect_ratio": "2:3", "orientation": "vertical", "safe_margins": "medium", "grid": "classic magazine cover grid with generous top header area and bottom utility area" }, "layers": { "background_layer": { "type": "single-photo-or-flat-color", "treatment": \[ "subtle paper grain", "light halftone/print texture", "slightly faded print tones" \] }, "title_layer": { "type": "oversized headline behind subject", "text": "GOOD NIGHT", "placement": "upper third, spanning wide", "z_index": "behind_subject", "style": { "case": "title case or sentence case (match exactly)", "font_feel": "bold retro editorial display", "color_rule": "match dominant background color for embedded look", "effects": \["no outline", "no glow", "clean fill"\] } }, "subject_layer": { "type": "foreground cutout", "masking": "clean edge cutout, natural silhouette", "z_index": "top", "rules": \[ "subject must overlap and partially cover the title text", "no extra cutout artifacts", "no duplicated subject" \] }, "frame_layer": { "type": "border + inner line + ornaments", "outer_border": { "material": "off-white textured paper", "shape": "rounded corners", "rule": "NO outer black frame" }, "inner_frame_line": { "style": "thin line near edges", "color": "subtle warm gray/beige", "opacity": "low" }, "corner_ornaments": { "style": "small classic corner marks", "quantity": "4", "subtlety": "minimal" } }, "header_microtext_layer": { "type": "small header metadata text", "placement": "top margin area", "alignment": "left to center, magazine-like", "text_blocks": \[ { "text": "GOOD NIGHT", "role": "micro_title" }, { "text": "Designed by @underwoodxie96", "role": "credit_line" }, { "text": "Date 16-12-2025", "role": "date_line" }, { "text": "Day Thirty {two}", "role": "day_counter" }, { "text": "2/5", "role": "issue_fraction" } \], "style": { "font_feel": "clean editorial sans or simple serif", "size": "very small", "tracking": "slightly increased", "color": "muted dark gray" } }, "barcode_layer": { "type": "barcode graphic", "placement": "bottom right", "size": "small to medium", "style": "clean black/gray on light background", "rule": "must remain visible" } }, "print_finish": { "global_texture": \["paper grain", "subtle halftone"\], "contrast": "medium-low", "saturation": "slightly faded", "clarity": "high but not HDR" } }, "constraints": { "must_keep": \[ "off-white textured border with rounded corners (NO outer black frame)", "thin inner frame line near the edges", "small corner ornaments", "oversized title text placed behind the subject and partially covered by the subject cutout", "paper/halftone print texture across the whole design", "barcode at bottom right", "header microtext blocks present at the top" \], "text_lock": \[ "Designed by @underwoodxie96", "Date 16-12-2025", "Day Thirty {two}", "2/5", "GOOD NIGHT" \], "avoid": \[ "outer black border/frame", "extra random text", "misspelled or garbled typography", "neon colors", "heavy HDR", "watermarks or extra logos" \] }, "negative_prompt": [ "watermark", "extra logos", "misspelled text", "garbled typography", "random letters", "outer black frame", "overprocessed", "heavy HDR", "neon colors", "low resolution" ] }
每当我抛出一个观点 评论区都会有人问 那该咋变现赚钱? 信息差赚钱方法不要太多 赚国内的就是卖课卖社群 搞咨询公司卖咨询服务 我说一个靠信息海外赚钱的思路吧 就是做参考阅读的海外版 直接搞聚合然后做精选的深度阅读 然后用Dan koe的工作流newsletter转长推做增长 重点解决俩问题: 信息过载的精选-有限时间,不错过重要内容 深度信息的洞察压缩-3小时访谈精选出核心观点(甚至带着时间戳) 就围绕一个人群干垂直 肯定可以变现
现在有一种流派玩法 前期靠运营n8n验证 验证成功后工程师vibe coding+hitp去反转n8n workflow成代码产品化 不过n8n的workflow有很都不太能直接投产使用 比如就拿youtube视频转中文来举例吧 这种东西卡点很多 ytb视频下载就是一个非常大的卡点 之前还可以无限下 现在一个cookie只能下一次 然后时间戳校对也是个卡点 这些卡点都拼在一起后,多数情况下光靠工作流想做到比较好的效果还是非常困难的 这种需求还是建议找靠谱的开源项目,比如videolingo 简单总结一下我对n8n的看法: 1、产品/运营专家能用来验证流程,想量产还是要代码化,如果会vibecoding,直接写很多时候比n8n快 2、个体户/机构可以用来唬smb,没啥使用规模,业务几近定制,n8n切这里是有很多市场空间的,一方面可以自己外包赚钱,另外一方面可以靠这个验证需求,后面再想办法产品化 3、做培训的/搞自媒体的可以用来搭玩具,做一些看起来有用的情绪价值很大的东西,很容易传播 4、不要对n8n抱有太高预期,也不应该太低估它,很适合个体户/小业务做运营验证和初步自动化,也适合搞社群卖课,不适合产品化规模化,上体量追求性能还是需要换换

dontbesilent
这是我对现在的中国知识付费行业的基础判断: 一、市场中能够提供有效知识的从业者极其稀少,接近统计学意义上的异常值 【词汇注释】 有效知识:经过验证、可重复、能解决实际问题的认知 无效知识:基于错误信息、偏见或臆测,未经验证或已被证伪的认知 二、对有效知识有真实需求的买家同样稀少 市场的主体结构是:无效供给 × 无效需求 即:卖家没有能力提供有效知识,买家也不需要有效知识,这种供需关系占据市场绝大多数 三、无效知识市场竞争激烈,有效知识市场供不应求 无效知识市场之所以竞争激烈,是因为其内容高度同质化、可以轻易复制和包装,同时进入门槛极低、无需真实能力。大量供给者涌入后,必然陷入价格战和营销战的红海厮杀 有效知识市场的供给稀缺且难以复制,长期处于供不应求的状态,几乎不存在竞争 —— 这是一片蓝海 四、当前市场中的交易,以安慰剂型交易为主 当前市场中,绝大多数是安慰剂型交易,即知识本身无效,但买家主观认为有效并获得了情绪价值 其次是欺诈型交易,买家事后认为被骗 再次是错配型交易,知识本身有效但不适合该买家 只有极少数是理想型交易,即有效知识匹配有效需求,买家获得了可验证的实质性收益——这里的「实质性收益」指可观察、可验证的能力提升或问题解决,而非仅仅是主观感受或短期情绪变化 以上四条,是我对中国知识付费行业的判断,也是我认为理解这个市场所需要的基础认知
Est. 200 views for your reply
