🔥 Search Hot Tweets
Search and analyze hot tweets from KOL accounts list (list: https://x.com/i/lists/1961235697677017443) within 6 hours. Use SoPilot plugin to quickly comment and occupy the comment section.

普通人如何拿到X 每月发的低保? 你突发奇想靠流量变现,但是发了条帖子,无人问津?你不信邪,在了一周,浏览量 50 但是X 上还是每天有人分享拿到低保,是他们都在骗你吗?还是你天生不适合做社交媒体? 不是的。假如你要学会借势,就是去大 V 评论区发表有价值的内容,你通过努力也可以成功。 但是,你要学会方法,优化每一个关键步骤 下面的视频介绍了: 为什么去大 V 评论区评论是第二好的起号方式 别人是如何关注你,你应该如何优化这个流程 社媒不是 零和游戏,你拿到了低保并不代表我会损失,所以我是真心分享与你 那么第一好的起号方式是什么呢?人多眼杂,进群分享。

新成就,GitHub 获得了 100 个 Stars! 还是挺开心的。 上一个项目被 fork 了 74 次都没人 Star 😂。 https://t.co/4b832Oj0TY

突破自己舒适圈很难,但也是一种像运动一样需要去锻炼的能力。多做几次,也就慢慢熟了。 我近几年自己最大尺度的一次突破舒适圈,是去面试《奇葩说》的海选。进了第一轮,当天真的是现场吵架,还是远程!我的天,感觉嘴巴都不利索了。嗯,准备啥的完全没用,那个就得看你是不是那种特质的性格。 我和我吵的那哥们儿年纪应该比我小一点,我们都双双被淘汰。那场海选十几个人,好像就选一到两个再进第二轮,再进第三轮,就这样,最终选出那些辩论(吵架)高手。 那次是真的体会到自己舒适圈之外的世界,挺好。丢脸吗?反正谁都不认识,谁就算真的是公开各种人看着你出丑,谁也不会太在意的。

「 LLM, Drivel-ology 」 “一家三代烟草人,传承和守望 。” LLM 能理解其深意么? Drivel-ology,这是啥?废话-学。 此处的废话跟 bullshit 又不一样,看似胡说八道,但又有某种目的的隐含意义,比如 “因为崇拜切格瓦拉的反思本主义思想,所以我买了他所有的文化周边。” 论文分享: [ Drivel-ology: Challenging LLMs with Interpreting Nonsense with Depth ] 作者提出 Drivel-ology,指语法正常却蕴含悖论、文化隐喻的有深度的胡说八道,并发现 LLM 虽能流畅生成文本,但对语用深层含义的理解不足。 LLM 在明显的有害信息检测上进步明显,但面对低级红高级黑,任重道远。

AI 如同电力,关键不在于谁能造出最亮的灯泡,而在于是否能建成覆盖全社会的“电网”。对普通人来说,包括程序员,真正的指数级机会不是在造模型端,而是在电网端:如何建立一套社会、技术与制度共同组成的网络,让智能像电力一样可靠、普及、隐形地运行。没有电网,AI 只能停留在少数人的炫目演示里;有了电网,它才能成为支撑下一阶段文明的底层基石。 AI as Electricity: Turning High Voltage into Everyday Use https://t.co/6Do2TLkL07

这个月参加了很多大会,见了不少人,跟去年不一样的是都开始谈“all in AI”。 现在一听到“all in AI”这个词我就脑瓜疼。 我对 AI 本身没什么疲惫感,主要现在很多企业喊得太轻巧太空洞了。 组织在用一种“只要喊了就算做了”的方式, 假装在变革。 但其实谁都知道,那些真正该动的地方一个都没动。 从组织角度讲,我看到的大多数所谓 all in,更像是一种花活,写一堆 MCP,挂个 AI 模块,接着开个发布会,发个 pr。 然后自我感动地告诉全公司,我们已经拥抱未来了。 那这个时候我就会很认真去问: - 那你们的数据打通了吗? - 你们把原来的流程拆了吗? - 你们给 AI 真的分配了决策权了吗? 回应基本就是沉默或者支吾。 说说我的看法,我现在特别警惕也特别反感那种技术热词主导的战略决策,它们太容易让人放弃思考、放弃怀疑并且放弃责任了。 一个人, 只要说 all in AI,好像就赢了; 只要说未来都得靠 AI,好像就站在了浪潮前面; 但实际呢?根本没构建任何 AI 能跑得起来的组织环境,也没有准备好用 AI 重新定义自己手里的权力、工作方式和判断逻辑。 仅仅只是站在原地,举着一个闪亮亮的口号,把自己骗得很开心而已。 真正的 all in,永远是疼的。 需要从最熟悉的系统里抽出骨头,打断惯性的思维方式,然后忍受混乱和不确定; 需要愿意承认“我原来那个流程是错的”、“我原来那套认知已经落后了”; 是必须对团队说:“我们从今天起不再靠人盯数据,而是相信模型先跑一轮”; 而不是说“我们接入了某某 AI API,所以从今天起我们变成 AI 公司了”。 我更愿意看到那种不说 all in,但确实把 AI 真正干进系统里的人。 比如医生端的文献检索系统重构,让医学知识能被自然语言查询和落地辅助决策, 比如客服系统不再是死板脚本,而是有记忆、有学习能力的半自动应答流程, 比如原来要三轮审批的工单系统,现在可以直接通过 AI agent 做前置分拣与聚类分析。 这些可不是 showcase,是一个组织真正动了肌肉骨骼,而不是给自己贴了个 AI 贴纸。 所以当我再听到有人说“我们也准备 all in AI 了”的时候, 我会忍不住想回一句:你准备 all in 的到底是什么? 是未来,还是自我安慰? 是能力体系的更新,还是一种不能落后的集体焦虑? 如果只是想借 AI 节省人力,那最后省下的不是成本,可能是整个系统的进化机会。 如果不想改人、不想改流程、不想改决策逻辑,那就别说 all in,真的没那么便宜的。 深夜的一点想法,写得有点重,但是真心的。 AI 是很酷,但别让它变成了又一个“喊完就算做了”的口号。 我们都值得一点更真实的变化。

为什么主打「悦己」口号的女性内衣品牌,真实目标都是库存管理 https://t.co/5shOQtX1ON

如何判断一个赛道是否拥挤 你就看同行的定价就知道个差不多 一套试卷,如果答题的都是尖子生,那答案就都大差不差 如果答题的都是差生,答案就千奇百怪 凡是定价整齐划一的,比如国内 20-25w 的新能源汽车市场,那就是高手如云,刀光剑影 凡是定价稀碎的,一人一个样的,比如国内某平台的心理疗愈赛道,那就是菜鸡成群,一顿胡搞 如果你懂定价,你会觉得毫无竞争可言,整个赛道就你一个人

宝玉
类似于老板让小明去找资料,小明找了一天没找到,但是小明把有价值的结果或线索整理成了一份简单的报告,第二天小红接手了这个任务,基于小明的报告继续找找到了。老板同时奖励了小明小红
Est. 200 views for your reply