🔥 Search Hot Tweets
Search and analyze hot tweets from KOL accounts list (list: https://x.com/i/lists/1961235697677017443) within 6 hours. Use SoPilot plugin to quickly comment and occupy the comment section.
哈哈哈,自用的视频生成 Skill 终于做好了。 以后生产视频方便多了,只需要一句话! 公开技术方案: 1. Listenhub API实现声音克隆,合成,字幕时间轴控制 2. Seedream 4.5 生成背景封面 3. Manim库实现文本动画 4. FFmpeg合成视频。 同时支持16:9 和9:16 视频,抖音、小红书我来了!
Introducing slide-deck skill 🎨 Turn any article or content into professional slide decks with AI-generated images. 15 styles to choose from: • blueprint - technical diagrams • sketch-notes - hand-drawn feel • corporate - investor-ready • pixel-art - retro gaming vibes • watercolor - artistic warmth ...and 10 more Just run /baoyu-slide-deck https://t.co/Mr6DFuOZiM or pdf and get: ✓ Auto-generated outline ✓ Individual slide images ✓ Merged PPTX ready to share Install: npx add-skill jimliu/baoyu-skills https://t.co/pRDqxdiSrH
DeepSeek 最近发的三篇论文,全部都是带梁文锋署名的,论文讲的内容也很有意思。 尤其是那篇讲 Engram 的,DeepSeek 相当于给模型带了一本“字典”进考场,把死记硬背的脑容量腾出来,专门用来做难题。 但他们发现,如果模型全是记忆(Engram),那就是个死记硬背的书呆子,完全没法思考。 但如果全是推理(MOE),又要浪费大量算力去推导像“中国首都是哪”这种固定知识。 那要带多少记忆去考试呢? DeepSeek 研究出了一个模型“记忆”和“思考”的黄金比例。 最后测出来的最佳配比是:75% 给思考,25% 给记忆。 这个结论可能不仅适合于模型,也值得人类深思。 当一个人记住所有细节,就约等于没有空间思考。 逻辑思维,适当抽象,是人类进步的源泉。 当一个人完全没有知识,只会浪费脑力去思考最基本的东西,脑力空转。 DeepSeek 实测,加了字典减少思考后,模型多出了相当于 7 层网络的思考深度。 没想到,知识的广度以这种方式增加了思考的深度。 很有启发。
gitlab这个玩意现在用的还多么? 我记得我当年大一的时候,班里有人为了方便写项目有人弄了个gitlab。 刚看了一眼,这么多年了,PE还是负数,PS是6.23,57亿的市值,真的还有人在用这个东西么,github被微软收购之后,gitlab感觉已经逐渐淡出视野了,刚看主页也是拥抱AI了
很多人和我探讨过,为什么某某账号看似不错,怎么突然就断更了 我始终坚持:这属于哲学上的不可知论,我们需要承认我们无法知晓答案 就算原作者告诉你他断更的原因,这也不是真相 因为作者自己也不知道真正的原因 他可能会说「太忙了」「没灵感了」「生活变故」,但这些都只是他能意识到的表层理由,是他的理性系统事后给出的「合理化解释」 真实的原因可能是:童年某个被忽视的经历导致的完美主义焦虑、多巴胺奖励机制的阈值变化、某个他自己都没察觉到的人际关系张力、荷尔蒙水平的微妙波动、大脑神经连接模式在某个时刻的重组,以及其他成千上万个相互作用的因素 更深层的问题是:当你问「为什么断更」时,你预设了存在一个单一的、可被言说的「原因」。但人的行为不是这样运作的。断更不是一个「决定」,而是无数微小的、无意识的倾向累积到某个临界点后的涌现现象

歸藏(guizang.ai)
“我们总是通过后视镜驶向未来” 推荐读一下 Notion CEO 这篇内容,关于 AI 为什么首先在编程领域爆发他的解释很好。 知识工作的两个瓶颈:上下文分散和可验证性,这点分析得很准。 这就是为什么程序员最先受益,因为他们的工作环境天然解决了这两个问题。 其他知识工作者要等到什么时候?可能取决于谁先把散落在几十个工具里的上下文整合起来。 ------------------------ 每个时代都有它的奇迹材料。钢铁塑造了镀金时代,半导体点亮了数字时代,现在AI以"无限心智"的形式到来了。 Notion创始人Ivan Zhao用历史隐喻说清楚了一件事:掌握这种材料的人定义时代。 为什么AI是"奇迹材料"? 因为它解决的是规模问题。19世纪前建筑只能盖六七层,铁太重太脆,楼层一多就塌。钢铁改变了一切,骨架更轻、墙体更薄,摩天大楼拔地而起。 AI对知识工作的意义和钢铁对建筑一样。人类沟通一直是组织的"承重墙",每周两小时对齐会、三级审批流程,都是在用人类尺度的工具解决工业规模的问题。 个人层面:什么时候能开上"汽车"? Ivan的联合创始人Simon原本是10×程序员,现在同时指挥三四个AI编码agents,变成了30-40×工程师。他午饭前排好任务,agents在他离开时继续工作。 这就像从踩自行车进化到开汽车。但为什么只有程序员能开上车? 两个问题必须解决。第一是上下文分散,编程工具集中在IDE和代码库,但一般知识工作散落在几十个工具里。AI要写产品简报得拉取Slack、战略文档、仪表盘数据,还有只存在脑子里的institutional memory。人类现在是粘合剂。 第二是可验证性。代码能用测试验证对错,AI能用强化学习改进。但怎么验证项目管理得好不好、策略memo写得行不行?没法验证就没法训练模型改进,人类只能继续监督。 一旦这两个问题解决,几十亿知识工作者会从自行车进化到汽车,再从汽车进化到自动驾驶。 组织层面:我们还在"替换水车"吗? 工业革命初期,蒸汽机刚出现时,工厂主只是把水车换成蒸汽机,其他都不变。生产力提升很有限。 真正的突破是工厂主意识到可以完全摆脱河流了。他们把工厂建在更靠近工人、港口和原材料的地方,围绕蒸汽机重新设计整个厂房。生产力才爆发。 现在的AI聊天机器人就像"替换水车"阶段,只是附加在现有工具上。我们还没重新想象:当组织可以依靠永不疲倦的无限头脑时,应该长什么样? Notion在做什么实验? Notion现在有1000名员工,但同时有超过700个agents在处理重复性工作。 它们记会议纪要、回答问题综合tribal knowledge、处理IT请求、记录客户反馈、帮新员工办入职、写周报省去复制粘贴。 Ivan说这只是起步,真正的收益只受想象力和惰性限制。 从佛罗伦萨到东京意味着什么? 钢铁和蒸汽不只改变建筑和工厂,它们改变了城市。 几百年前的城市是人类尺度的,你能在40分钟内走完佛罗伦萨。然后钢架结构让摩天大楼成为可能,蒸汽铁路连接市中心和内陆,城市在规模和密度上爆炸。东京、重庆、达拉斯都不是更大的佛罗伦萨,它们是完全不同的生活方式。 知识经济现在占美国GDP近一半,但大多数还在人类尺度运作:几十人的团队,会议和邮件控制节奏,组织超过几百人就开始变形。我们用石头和木头建了佛罗伦萨。 当大量AI agents上线,我们会建造东京。数千个agents和人类组成的组织,工作流程跨时区持续运行,不用等人醒来,决策在适量人类介入下合成。 会更快、杠杆更高,但起初也更迷失方向。周会、季度规划、年度评估的节奏可能不再有意义。新节奏会出现。我们失去一些可读性,但获得规模和速度。
Est. 2.5K views for your reply
