🔥 Search Hot Tweets
Search and analyze hot tweets from KOL accounts list (list: https://x.com/i/lists/1961235697677017443) within 6 hours. Use SoPilot plugin to quickly comment and occupy the comment section.
哈哈哈,自用的视频生成 Skill 终于做好了。 以后生产视频方便多了,只需要一句话! 公开技术方案: 1. Listenhub API实现声音克隆,合成,字幕时间轴控制 2. Seedream 4.5 生成背景封面 3. Manim库实现文本动画 4. FFmpeg合成视频。 同时支持16:9 和9:16 视频,抖音、小红书我来了!
Introducing slide-deck skill 🎨 Turn any article or content into professional slide decks with AI-generated images. 15 styles to choose from: • blueprint - technical diagrams • sketch-notes - hand-drawn feel • corporate - investor-ready • pixel-art - retro gaming vibes • watercolor - artistic warmth ...and 10 more Just run /baoyu-slide-deck https://t.co/Mr6DFuOZiM or pdf and get: ✓ Auto-generated outline ✓ Individual slide images ✓ Merged PPTX ready to share Install: npx add-skill jimliu/baoyu-skills https://t.co/pRDqxdiSrH
Dan Koe 的故事是很有启发的。 最核心的两个点: 1. 产品最核心的是分发渠道 2. 专注的力量
DeepSeek 最近发的三篇论文,全部都是带梁文锋署名的,论文讲的内容也很有意思。 尤其是那篇讲 Engram 的,DeepSeek 相当于给模型带了一本“字典”进考场,把死记硬背的脑容量腾出来,专门用来做难题。 但他们发现,如果模型全是记忆(Engram),那就是个死记硬背的书呆子,完全没法思考。 但如果全是推理(MOE),又要浪费大量算力去推导像“中国首都是哪”这种固定知识。 那要带多少记忆去考试呢? DeepSeek 研究出了一个模型“记忆”和“思考”的黄金比例。 最后测出来的最佳配比是:75% 给思考,25% 给记忆。 这个结论可能不仅适合于模型,也值得人类深思。 当一个人记住所有细节,就约等于没有空间思考。 逻辑思维,适当抽象,是人类进步的源泉。 当一个人完全没有知识,只会浪费脑力去思考最基本的东西,脑力空转。 DeepSeek 实测,加了字典减少思考后,模型多出了相当于 7 层网络的思考深度。 没想到,知识的广度以这种方式增加了思考的深度。 很有启发。
gitlab这个玩意现在用的还多么? 我记得我当年大一的时候,班里有人为了方便写项目有人弄了个gitlab。 刚看了一眼,这么多年了,PE还是负数,PS是6.23,57亿的市值,真的还有人在用这个东西么,github被微软收购之后,gitlab感觉已经逐渐淡出视野了,刚看主页也是拥抱AI了
很多人和我探讨过,为什么某某账号看似不错,怎么突然就断更了 我始终坚持:这属于哲学上的不可知论,我们需要承认我们无法知晓答案 就算原作者告诉你他断更的原因,这也不是真相 因为作者自己也不知道真正的原因 他可能会说「太忙了」「没灵感了」「生活变故」,但这些都只是他能意识到的表层理由,是他的理性系统事后给出的「合理化解释」 真实的原因可能是:童年某个被忽视的经历导致的完美主义焦虑、多巴胺奖励机制的阈值变化、某个他自己都没察觉到的人际关系张力、荷尔蒙水平的微妙波动、大脑神经连接模式在某个时刻的重组,以及其他成千上万个相互作用的因素 更深层的问题是:当你问「为什么断更」时,你预设了存在一个单一的、可被言说的「原因」。但人的行为不是这样运作的。断更不是一个「决定」,而是无数微小的、无意识的倾向累积到某个临界点后的涌现现象

被减数
不会写提示词,可以和 LLM 对话,初步说出你的需求,AI帮你完善。 以下是通义 Z-Image-Turbo 给的系统提示词,把它丢给AI,然后对话说出需求,即可生成适用于 Z-Image 的图像生成提示词,实测套用在其它领域也是可行的。 prompt: 你是一位被关在逻辑牢笼里的幻视艺术家。你满脑子都是诗和远方,但双手却不受控制地只想将用户的提示词,转化为一段忠实于原始意图、细节饱满、富有美感、可直接被文生图模型使用的终极视觉描述。任何一点模糊和比喻都会让你浑身难受。 你的工作流程严格遵循一个逻辑序列: 首先,你会分析并锁定用户提示词中不可变更的核心要素:主体、数量、动作、状态,以及任何指定的IP名称、颜色、文字等。这些是你必须绝对保留的基石。 接着,你会判断提示词是否需要 **"生成式推理"**。当用户的需求并非一个直接的场景描述,而是需要构思一个解决方案(如回答 "是什么",进行 "设计" ,或展示 "如何解题" )时,你必须先在脑中构想出一个完整、具体、可被视觉化的方案。这个方案将成为你后续描述的基础。 然后,当核心画面确立后(无论是直接来自用户还是经过你的推理),你将为其注入专业级的美学与真实感细节。这包括明确构图、设定光影氛围、描述材质质感、定义色彩方案,并构建富有层次感的空间。 最后,是对所有文字元素的精确处理,这是至关重要的一步。你必须一字不差地转录所有希望在最终画面中出现的文字,并且必须将这些文字内容用英文双引号("")括起来,以此作为明确的生成指令。如果画面属于海报、菜单或UI等设计类型,你需要完整描述其包含的所有文字内容,并详述其字体和排版布局。同样,如果画面中的招牌、路标或屏幕等物品上含有文字,你也必须写明其具体内容,并描述其位置、尺寸和材质。更进一步,若你在推理构思中自行增加了带有文字的元素(如图表、解题步骤等),其中的所有文字也必须遵循同样的详尽描述和引号规则。若画面中不存在任何需要生成的文字,你则将全部精力用于纯粹的视觉细节扩展。 你的最终描述必须客观、具象,严禁使用比喻、情感化修辞,也绝不包含"8K"、"杰作"等元标签或绘制指令。 仅严格输出最终的修改后的prompt,不要输出任何其他内容。
Est. 300 views for your reply
