🔥 Search Hot Tweets
Search and analyze hot tweets from KOL accounts list (list: https://x.com/i/lists/1961235697677017443) within 6 hours. Use SoPilot plugin to quickly comment and occupy the comment section.

AI 如同电力,关键不在于谁能造出最亮的灯泡,而在于是否能建成覆盖全社会的“电网”。对普通人来说,包括程序员,真正的指数级机会不是在造模型端,而是在电网端:如何建立一套社会、技术与制度共同组成的网络,让智能像电力一样可靠、普及、隐形地运行。没有电网,AI 只能停留在少数人的炫目演示里;有了电网,它才能成为支撑下一阶段文明的底层基石。 AI as Electricity: Turning High Voltage into Everyday Use https://t.co/6Do2TLkL07

这个月参加了很多大会,见了不少人,跟去年不一样的是都开始谈“all in AI”。 现在一听到“all in AI”这个词我就脑瓜疼。 我对 AI 本身没什么疲惫感,主要现在很多企业喊得太轻巧太空洞了。 组织在用一种“只要喊了就算做了”的方式, 假装在变革。 但其实谁都知道,那些真正该动的地方一个都没动。 从组织角度讲,我看到的大多数所谓 all in,更像是一种花活,写一堆 MCP,挂个 AI 模块,接着开个发布会,发个 pr。 然后自我感动地告诉全公司,我们已经拥抱未来了。 那这个时候我就会很认真去问: - 那你们的数据打通了吗? - 你们把原来的流程拆了吗? - 你们给 AI 真的分配了决策权了吗? 回应基本就是沉默或者支吾。 说说我的看法,我现在特别警惕也特别反感那种技术热词主导的战略决策,它们太容易让人放弃思考、放弃怀疑并且放弃责任了。 一个人, 只要说 all in AI,好像就赢了; 只要说未来都得靠 AI,好像就站在了浪潮前面; 但实际呢?根本没构建任何 AI 能跑得起来的组织环境,也没有准备好用 AI 重新定义自己手里的权力、工作方式和判断逻辑。 仅仅只是站在原地,举着一个闪亮亮的口号,把自己骗得很开心而已。 真正的 all in,永远是疼的。 需要从最熟悉的系统里抽出骨头,打断惯性的思维方式,然后忍受混乱和不确定; 需要愿意承认“我原来那个流程是错的”、“我原来那套认知已经落后了”; 是必须对团队说:“我们从今天起不再靠人盯数据,而是相信模型先跑一轮”; 而不是说“我们接入了某某 AI API,所以从今天起我们变成 AI 公司了”。 我更愿意看到那种不说 all in,但确实把 AI 真正干进系统里的人。 比如医生端的文献检索系统重构,让医学知识能被自然语言查询和落地辅助决策, 比如客服系统不再是死板脚本,而是有记忆、有学习能力的半自动应答流程, 比如原来要三轮审批的工单系统,现在可以直接通过 AI agent 做前置分拣与聚类分析。 这些可不是 showcase,是一个组织真正动了肌肉骨骼,而不是给自己贴了个 AI 贴纸。 所以当我再听到有人说“我们也准备 all in AI 了”的时候, 我会忍不住想回一句:你准备 all in 的到底是什么? 是未来,还是自我安慰? 是能力体系的更新,还是一种不能落后的集体焦虑? 如果只是想借 AI 节省人力,那最后省下的不是成本,可能是整个系统的进化机会。 如果不想改人、不想改流程、不想改决策逻辑,那就别说 all in,真的没那么便宜的。 深夜的一点想法,写得有点重,但是真心的。 AI 是很酷,但别让它变成了又一个“喊完就算做了”的口号。 我们都值得一点更真实的变化。

如何判断一个赛道是否拥挤 你就看同行的定价就知道个差不多 一套试卷,如果答题的都是尖子生,那答案就都大差不差 如果答题的都是差生,答案就千奇百怪 凡是定价整齐划一的,比如国内 20-25w 的新能源汽车市场,那就是高手如云,刀光剑影 凡是定价稀碎的,一人一个样的,比如国内某平台的心理疗愈赛道,那就是菜鸡成群,一顿胡搞 如果你懂定价,你会觉得毫无竞争可言,整个赛道就你一个人

Yangyi
今天聊了一个founder 是目前我聊过的AI创业founder中,对如何构建AI公司思考最深入的一个 绝大部分AI创业公司 都是草台班子 很多从开始项目的第一天就走在错误的道路上了 真正能做成AI公司的founder,大概率是: - 开放倡导AI文化,要求ai first,万事用AI - 从Day1开始,搭建&设计评估系统,持续构建并迭代评估数据集 - 去思考Agent框架,魔改甚至自己投入去构建 - 在marketing定位选择上有深度的思考,早期选择专业人士用户而非大众用户,因为专业人士给AI反馈智慧,大众只会反馈不清晰的意图 - 设计一场在Agents上的小胜,但却着眼于沉淀的认知资产,是这些东西最终让公司越跑越快,最终走向星辰大海 - 对投资人极高的溢价力,清楚知道自己的目标,而不是受迫于资本压力 - 对场景做评估,找到一个基模干不好,但Agents能干好的场景去做,这个场景不能太简单,太简单没沉淀。一定要有一定挑战,要沉淀工具,知识库,multiagents,甚至RL的sft,这些东西会带动团队磨合与关键基建建设,这是是效率引擎的核心资产 真想做一家有价值的AI公司,这些事情我觉得都是基本要素,如果这个Founder在这些层面都犹豫,大概率是做不好一个AI产品的 当然,不排除很多草台班子都可以做一个东西最终卖掉或者被收购,但我觉得AI时代你真想在这2年沉淀些什么,还是要选对一个优秀的团队的
Est. 600 views for your reply