🔥 Search Hot Tweets
Search and analyze hot tweets from KOL accounts list (list: https://x.com/i/lists/1961235697677017443) within 6 hours. Use SoPilot plugin to quickly comment and occupy the comment section.

AI 如同电力,关键不在于谁能造出最亮的灯泡,而在于是否能建成覆盖全社会的“电网”。对普通人来说,包括程序员,真正的指数级机会不是在造模型端,而是在电网端:如何建立一套社会、技术与制度共同组成的网络,让智能像电力一样可靠、普及、隐形地运行。没有电网,AI 只能停留在少数人的炫目演示里;有了电网,它才能成为支撑下一阶段文明的底层基石。 AI as Electricity: Turning High Voltage into Everyday Use https://t.co/6Do2TLkL07

这个月参加了很多大会,见了不少人,跟去年不一样的是都开始谈“all in AI”。 现在一听到“all in AI”这个词我就脑瓜疼。 我对 AI 本身没什么疲惫感,主要现在很多企业喊得太轻巧太空洞了。 组织在用一种“只要喊了就算做了”的方式, 假装在变革。 但其实谁都知道,那些真正该动的地方一个都没动。 从组织角度讲,我看到的大多数所谓 all in,更像是一种花活,写一堆 MCP,挂个 AI 模块,接着开个发布会,发个 pr。 然后自我感动地告诉全公司,我们已经拥抱未来了。 那这个时候我就会很认真去问: - 那你们的数据打通了吗? - 你们把原来的流程拆了吗? - 你们给 AI 真的分配了决策权了吗? 回应基本就是沉默或者支吾。 说说我的看法,我现在特别警惕也特别反感那种技术热词主导的战略决策,它们太容易让人放弃思考、放弃怀疑并且放弃责任了。 一个人, 只要说 all in AI,好像就赢了; 只要说未来都得靠 AI,好像就站在了浪潮前面; 但实际呢?根本没构建任何 AI 能跑得起来的组织环境,也没有准备好用 AI 重新定义自己手里的权力、工作方式和判断逻辑。 仅仅只是站在原地,举着一个闪亮亮的口号,把自己骗得很开心而已。 真正的 all in,永远是疼的。 需要从最熟悉的系统里抽出骨头,打断惯性的思维方式,然后忍受混乱和不确定; 需要愿意承认“我原来那个流程是错的”、“我原来那套认知已经落后了”; 是必须对团队说:“我们从今天起不再靠人盯数据,而是相信模型先跑一轮”; 而不是说“我们接入了某某 AI API,所以从今天起我们变成 AI 公司了”。 我更愿意看到那种不说 all in,但确实把 AI 真正干进系统里的人。 比如医生端的文献检索系统重构,让医学知识能被自然语言查询和落地辅助决策, 比如客服系统不再是死板脚本,而是有记忆、有学习能力的半自动应答流程, 比如原来要三轮审批的工单系统,现在可以直接通过 AI agent 做前置分拣与聚类分析。 这些可不是 showcase,是一个组织真正动了肌肉骨骼,而不是给自己贴了个 AI 贴纸。 所以当我再听到有人说“我们也准备 all in AI 了”的时候, 我会忍不住想回一句:你准备 all in 的到底是什么? 是未来,还是自我安慰? 是能力体系的更新,还是一种不能落后的集体焦虑? 如果只是想借 AI 节省人力,那最后省下的不是成本,可能是整个系统的进化机会。 如果不想改人、不想改流程、不想改决策逻辑,那就别说 all in,真的没那么便宜的。 深夜的一点想法,写得有点重,但是真心的。 AI 是很酷,但别让它变成了又一个“喊完就算做了”的口号。 我们都值得一点更真实的变化。

如何判断一个赛道是否拥挤 你就看同行的定价就知道个差不多 一套试卷,如果答题的都是尖子生,那答案就都大差不差 如果答题的都是差生,答案就千奇百怪 凡是定价整齐划一的,比如国内 20-25w 的新能源汽车市场,那就是高手如云,刀光剑影 凡是定价稀碎的,一人一个样的,比如国内某平台的心理疗愈赛道,那就是菜鸡成群,一顿胡搞 如果你懂定价,你会觉得毫无竞争可言,整个赛道就你一个人

宝玉
Dario 说 AI 会写 90% 的代码,包括 Codex 团队也说它们大部分代码都是 Codex 完成的,这很容易造成一种误解:“软件工程师的岗位要被 AI 取代了”,但实际上并不完全是这样的,只是说明软件工程师工作的方式正在升级,对技能的要求也不一样了。 几个简单的方法可以判断: - 看 Anthropic、OpenAI 这些 AI 模型公司是不是还在大规模招聘软件工程师; - 看一个初中级程序员能不能用 Claude Code 或者 Codex 写出 Claude Code。 因为代码行数并不代表代码的价值,真正有价值的是专业人士基于业务需求用 AI 生成的并审查的代码。 实际上我自己的开发方式已经发生了很多变化: - 琐碎的事情几乎 100% 让 AI 完成,比如写自动化测试代码,比如一些提升效率的脚本 - Bug 让 AI 去修复,人工审查,验证 - 原型开发,完全由 AI 实现 - 人工设计完,让 AI 去实现一个模块,而不是从头手写代码,也不是以前那种和 AI 结对一边写一边确认的方式,而是完全 AI 去写 - AI 写完代码,先让 AI Review 代码,然后人工 Review,再合并 - 一些复杂的算法、POC,让 AI 帮我实现(我自己没能力或者没精力实现的),现在最新的 Codex 已经能帮我搞定一些复杂的技术问题了 一个凭感觉的对我自己量化的对我开发效率影响的数据: - GitHub Copilot 第一版的自动完成:效率提升 10% - Cursor: Tab + Chat 模式提升 30%+ - Cursor:Edit 模式 提升 50%+,不需要手动复制粘贴代码 - Claude Code:提升 100%+,第一个真正能用的 Coding Agent,很聪明,相对不够稳定 - Codex(GPT-5-Codex high): 提升 120%+,速度慢,但是结果很稳定,bug 少 也就是说现在借助 AI 辅助,我的开发效率至少提升一倍以上,这个进化速度确实惊人,超乎我的想象,如果你翻看我一年前的看法,当时我是没有这么乐观的。 但也不要忽视这样效率的提升背后需要的条件: - 需要懂代码:算法、数据结构、语言等等 - 需要一点技术管理经验:会对复杂任务分解拆分,管理多个 AI Agents 协作 - 提示词工程:能用提示词把想要 AI 实现的功能或者解决的问题描述清楚 - 代码和架构是 AI 友好的:对于 AI 训练丰富的代码 AI 生成是擅长的,如果都是内部的库或者使用量很少的编程语言或类库,AI 生成效率要大打折扣 这也意味着想要最大化的发挥 AI 编程的效率,本身需要有一定的软件开发经历,另一方面还要去学习 AI 相关的一些知识,去改变自己的一些使用习惯。 虽然说 AI 无法取代软件工程师,但可以看见有了 AI 辅助,软件工程师效率是能大幅提升的,至于这带来的连锁反应,比如团队会少招人,比如新人机会更少,这些确实也是在实实在在发生的事情。 未来会怎样?谁知道呢!
Est. 200 views for your reply