🔥 Search Hot Tweets
Search and analyze hot tweets from KOL accounts list (list: https://x.com/i/lists/1961235697677017443) within 6 hours. Use SoPilot plugin to quickly comment and occupy the comment section.

新成就,GitHub 获得了 100 个 Stars! 还是挺开心的。 上一个项目被 fork 了 74 次都没人 Star 😂。 https://t.co/4b832Oj0TY

「 LLM, Drivel-ology 」 “一家三代烟草人,传承和守望 。” LLM 能理解其深意么? Drivel-ology,这是啥?废话-学。 此处的废话跟 bullshit 又不一样,看似胡说八道,但又有某种目的的隐含意义,比如 “因为崇拜切格瓦拉的反思本主义思想,所以我买了他所有的文化周边。” 论文分享: [ Drivel-ology: Challenging LLMs with Interpreting Nonsense with Depth ] 作者提出 Drivel-ology,指语法正常却蕴含悖论、文化隐喻的有深度的胡说八道,并发现 LLM 虽能流畅生成文本,但对语用深层含义的理解不足。 LLM 在明显的有害信息检测上进步明显,但面对低级红高级黑,任重道远。

AI 如同电力,关键不在于谁能造出最亮的灯泡,而在于是否能建成覆盖全社会的“电网”。对普通人来说,包括程序员,真正的指数级机会不是在造模型端,而是在电网端:如何建立一套社会、技术与制度共同组成的网络,让智能像电力一样可靠、普及、隐形地运行。没有电网,AI 只能停留在少数人的炫目演示里;有了电网,它才能成为支撑下一阶段文明的底层基石。 AI as Electricity: Turning High Voltage into Everyday Use https://t.co/6Do2TLkL07

这个月参加了很多大会,见了不少人,跟去年不一样的是都开始谈“all in AI”。 现在一听到“all in AI”这个词我就脑瓜疼。 我对 AI 本身没什么疲惫感,主要现在很多企业喊得太轻巧太空洞了。 组织在用一种“只要喊了就算做了”的方式, 假装在变革。 但其实谁都知道,那些真正该动的地方一个都没动。 从组织角度讲,我看到的大多数所谓 all in,更像是一种花活,写一堆 MCP,挂个 AI 模块,接着开个发布会,发个 pr。 然后自我感动地告诉全公司,我们已经拥抱未来了。 那这个时候我就会很认真去问: - 那你们的数据打通了吗? - 你们把原来的流程拆了吗? - 你们给 AI 真的分配了决策权了吗? 回应基本就是沉默或者支吾。 说说我的看法,我现在特别警惕也特别反感那种技术热词主导的战略决策,它们太容易让人放弃思考、放弃怀疑并且放弃责任了。 一个人, 只要说 all in AI,好像就赢了; 只要说未来都得靠 AI,好像就站在了浪潮前面; 但实际呢?根本没构建任何 AI 能跑得起来的组织环境,也没有准备好用 AI 重新定义自己手里的权力、工作方式和判断逻辑。 仅仅只是站在原地,举着一个闪亮亮的口号,把自己骗得很开心而已。 真正的 all in,永远是疼的。 需要从最熟悉的系统里抽出骨头,打断惯性的思维方式,然后忍受混乱和不确定; 需要愿意承认“我原来那个流程是错的”、“我原来那套认知已经落后了”; 是必须对团队说:“我们从今天起不再靠人盯数据,而是相信模型先跑一轮”; 而不是说“我们接入了某某 AI API,所以从今天起我们变成 AI 公司了”。 我更愿意看到那种不说 all in,但确实把 AI 真正干进系统里的人。 比如医生端的文献检索系统重构,让医学知识能被自然语言查询和落地辅助决策, 比如客服系统不再是死板脚本,而是有记忆、有学习能力的半自动应答流程, 比如原来要三轮审批的工单系统,现在可以直接通过 AI agent 做前置分拣与聚类分析。 这些可不是 showcase,是一个组织真正动了肌肉骨骼,而不是给自己贴了个 AI 贴纸。 所以当我再听到有人说“我们也准备 all in AI 了”的时候, 我会忍不住想回一句:你准备 all in 的到底是什么? 是未来,还是自我安慰? 是能力体系的更新,还是一种不能落后的集体焦虑? 如果只是想借 AI 节省人力,那最后省下的不是成本,可能是整个系统的进化机会。 如果不想改人、不想改流程、不想改决策逻辑,那就别说 all in,真的没那么便宜的。 深夜的一点想法,写得有点重,但是真心的。 AI 是很酷,但别让它变成了又一个“喊完就算做了”的口号。 我们都值得一点更真实的变化。

如何判断一个赛道是否拥挤 你就看同行的定价就知道个差不多 一套试卷,如果答题的都是尖子生,那答案就都大差不差 如果答题的都是差生,答案就千奇百怪 凡是定价整齐划一的,比如国内 20-25w 的新能源汽车市场,那就是高手如云,刀光剑影 凡是定价稀碎的,一人一个样的,比如国内某平台的心理疗愈赛道,那就是菜鸡成群,一顿胡搞 如果你懂定价,你会觉得毫无竞争可言,整个赛道就你一个人

宝玉
转译:有人发现了一个让 AI 智能体(AI Agent)工作更出色的绝妙方法,简单到令人惊讶:只要给它们设定一个人格。 我最近读了一篇关于“心理学增强型 AI 智能体”(Psychologically Enhanced AI Agents)的论文,它揭示了一个引人入注的观点:我们无需进行任何复杂或昂贵的重新训练,就能引导 AI 的行为。 事情的背景是这样的:通常,如果你想让一个 AI 精通某项特定任务(比如,让它擅长创意写作,而不是战略分析),你必须进行成本高昂且耗时的“微调”(fine-tuning)。 问题在于,一个通用的、“一刀切”的 AI 往往不是最佳选择。一个为检索事实而优化的模型,可能很难写出一个富有同理心、感人至深的故事。 这篇论文的关键发现,是一个名为 MBTI-in-Thoughts 的框架。研究人员发现,只要在提示词(prompt)里,简单地要求大语言模型(LLM)扮演一个特定的迈尔斯-布里格斯类型指标(MBTI)人格,它的行为就会发生可预测、且非常有用的改变。 举个例子,在一个策略博弈游戏中: * 被设定为“思考”(T)型人格的智能体,选择背叛的概率接近 90%。 * 而被设定为“情感”(F)型人格的智能体则更倾向于合作,背叛的概率仅为 50% 左右。 这一切仅仅通过一句提示词就实现了,根本不需要任何微调。 这事儿最让人着迷的地方,就在于它出人意料的简单。这种能力其实一直都潜藏在模型内部,而提示词就像一把钥匙,把它解锁了。 为了确保这不是巧合,研究人员还让被“注入”了人格的 AI 去做了官方的 16 型人格测试(16 Personalities test)。结果,AI 的答案与它被指定的人格完全一致。在执行任务时,它真的“变成”了那种人格。 这彻底改变了我对提示词工程(prompt engineering)的看法。它不再仅仅是关于你*问 AI 什么*,更是关于你*让 AI 成为谁*。 实际应用前景可以说是立竿见影: * 需要一个能共情的 AI 客服?把它设定成 ISFJ(“守卫者”)。 * 需要一个能做冷酷市场分析的 AI?试试 ENTJ(“指挥官”)。 你可以根据手头的任务,来匹配智能体的“天赋”。 从更宏观的视角来看,这意味着未来我们可能不再依赖于单一的、庞大的 AI 模型。取而代之的,我们或许可以构建由多个 AI 智能体组成的多元化团队,每个智能体都拥有为其特定角色量身打造的“人格”。 想象一下,一个充满创意的“ENFP”型智能体和一个注重逻辑的“ISTJ”型智能体一起头脑风暴,共同规划一个复杂项目。这就引出了一个全新的问题:要解决某个特定问题,最佳的人格组合是什么? 归根结底,这项研究为我们指明了一个通往更通用、更强大、也更可控的 AI 的未来。我们正在学习的,不仅是塑造 AI 的输出结果,更是它在处理任务时整个的认知与情感风格。一句简单的提示词,就能解锁一个行为的全新维度。
Est. 1.0K views for your reply